\(\int \frac {(e x)^{3/2} (A+B x^2)}{\sqrt {a+b x^2}} \, dx\) [801]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 174 \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 (7 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^2}}{21 b^2}+\frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e}-\frac {a^{3/4} (7 A b-5 a B) e^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{21 b^{9/4} \sqrt {a+b x^2}} \]

[Out]

2/7*B*(e*x)^(5/2)*(b*x^2+a)^(1/2)/b/e+2/21*(7*A*b-5*B*a)*e*(e*x)^(1/2)*(b*x^2+a)^(1/2)/b^2-1/21*a^(3/4)*(7*A*b
-5*B*a)*e^(3/2)*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/
a^(1/4)/e^(1/2)))*EllipticF(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2)
)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(9/4)/(b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {470, 327, 335, 226} \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=-\frac {a^{3/4} e^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (7 A b-5 a B) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right ),\frac {1}{2}\right )}{21 b^{9/4} \sqrt {a+b x^2}}+\frac {2 e \sqrt {e x} \sqrt {a+b x^2} (7 A b-5 a B)}{21 b^2}+\frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e} \]

[In]

Int[((e*x)^(3/2)*(A + B*x^2))/Sqrt[a + b*x^2],x]

[Out]

(2*(7*A*b - 5*a*B)*e*Sqrt[e*x]*Sqrt[a + b*x^2])/(21*b^2) + (2*B*(e*x)^(5/2)*Sqrt[a + b*x^2])/(7*b*e) - (a^(3/4
)*(7*A*b - 5*a*B)*e^(3/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(
b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(21*b^(9/4)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e}-\frac {\left (2 \left (-\frac {7 A b}{2}+\frac {5 a B}{2}\right )\right ) \int \frac {(e x)^{3/2}}{\sqrt {a+b x^2}} \, dx}{7 b} \\ & = \frac {2 (7 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^2}}{21 b^2}+\frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e}-\frac {\left (a (7 A b-5 a B) e^2\right ) \int \frac {1}{\sqrt {e x} \sqrt {a+b x^2}} \, dx}{21 b^2} \\ & = \frac {2 (7 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^2}}{21 b^2}+\frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e}-\frac {(2 a (7 A b-5 a B) e) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{21 b^2} \\ & = \frac {2 (7 A b-5 a B) e \sqrt {e x} \sqrt {a+b x^2}}{21 b^2}+\frac {2 B (e x)^{5/2} \sqrt {a+b x^2}}{7 b e}-\frac {a^{3/4} (7 A b-5 a B) e^{3/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{21 b^{9/4} \sqrt {a+b x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.08 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.55 \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 e \sqrt {e x} \left (-\left (\left (a+b x^2\right ) \left (-7 A b+5 a B-3 b B x^2\right )\right )+a (-7 A b+5 a B) \sqrt {1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {b x^2}{a}\right )\right )}{21 b^2 \sqrt {a+b x^2}} \]

[In]

Integrate[((e*x)^(3/2)*(A + B*x^2))/Sqrt[a + b*x^2],x]

[Out]

(2*e*Sqrt[e*x]*(-((a + b*x^2)*(-7*A*b + 5*a*B - 3*b*B*x^2)) + a*(-7*A*b + 5*a*B)*Sqrt[1 + (b*x^2)/a]*Hypergeom
etric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)]))/(21*b^2*Sqrt[a + b*x^2])

Maple [A] (verified)

Time = 3.03 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.09

method result size
risch \(\frac {2 \left (3 b B \,x^{2}+7 A b -5 B a \right ) x \sqrt {b \,x^{2}+a}\, e^{2}}{21 b^{2} \sqrt {e x}}-\frac {a \left (7 A b -5 B a \right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) e^{2} \sqrt {\left (b \,x^{2}+a \right ) e x}}{21 b^{3} \sqrt {b e \,x^{3}+a e x}\, \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(190\)
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (\frac {2 B e \,x^{2} \sqrt {b e \,x^{3}+a e x}}{7 b}+\frac {2 \left (A \,e^{2}-\frac {5 B \,e^{2} a}{7 b}\right ) \sqrt {b e \,x^{3}+a e x}}{3 b e}-\frac {\left (A \,e^{2}-\frac {5 B \,e^{2} a}{7 b}\right ) a \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{3 b^{2} \sqrt {b e \,x^{3}+a e x}}\right )}{e x \sqrt {b \,x^{2}+a}}\) \(222\)
default \(-\frac {e \sqrt {e x}\, \left (7 A \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a b}\, a b -5 B \sqrt {2}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, F\left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a b}\, a^{2}-6 b^{3} B \,x^{5}-14 A \,b^{3} x^{3}+4 B a \,b^{2} x^{3}-14 a \,b^{2} A x +10 a^{2} b B x \right )}{21 x \sqrt {b \,x^{2}+a}\, b^{3}}\) \(250\)

[In]

int((e*x)^(3/2)*(B*x^2+A)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/21*(3*B*b*x^2+7*A*b-5*B*a)*x*(b*x^2+a)^(1/2)/b^2*e^2/(e*x)^(1/2)-1/21*a*(7*A*b-5*B*a)/b^3*(-a*b)^(1/2)*((x+(
-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-x/(-a*b)^(1/2)*b)^(1/2)/(b
*e*x^3+a*e*x)^(1/2)*EllipticF(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))*e^2*((b*x^2+a)*e*x)^(1/2)
/(e*x)^(1/2)/(b*x^2+a)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.43 \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {2 \, {\left ({\left (5 \, B a^{2} - 7 \, A a b\right )} \sqrt {b e} e {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) + {\left (3 \, B b^{2} e x^{2} - {\left (5 \, B a b - 7 \, A b^{2}\right )} e\right )} \sqrt {b x^{2} + a} \sqrt {e x}\right )}}{21 \, b^{3}} \]

[In]

integrate((e*x)^(3/2)*(B*x^2+A)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/21*((5*B*a^2 - 7*A*a*b)*sqrt(b*e)*e*weierstrassPInverse(-4*a/b, 0, x) + (3*B*b^2*e*x^2 - (5*B*a*b - 7*A*b^2)
*e)*sqrt(b*x^2 + a)*sqrt(e*x))/b^3

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.01 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.54 \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\frac {A e^{\frac {3}{2}} x^{\frac {5}{2}} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} + \frac {B e^{\frac {3}{2}} x^{\frac {9}{2}} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {13}{4}\right )} \]

[In]

integrate((e*x)**(3/2)*(B*x**2+A)/(b*x**2+a)**(1/2),x)

[Out]

A*e**(3/2)*x**(5/2)*gamma(5/4)*hyper((1/2, 5/4), (9/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(9/4)) + B*
e**(3/2)*x**(9/2)*gamma(9/4)*hyper((1/2, 9/4), (13/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(13/4))

Maxima [F]

\[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{\frac {3}{2}}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((e*x)^(3/2)*(B*x^2+A)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(e*x)^(3/2)/sqrt(b*x^2 + a), x)

Giac [F]

\[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} \left (e x\right )^{\frac {3}{2}}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((e*x)^(3/2)*(B*x^2+A)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(e*x)^(3/2)/sqrt(b*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{3/2} \left (A+B x^2\right )}{\sqrt {a+b x^2}} \, dx=\int \frac {\left (B\,x^2+A\right )\,{\left (e\,x\right )}^{3/2}}{\sqrt {b\,x^2+a}} \,d x \]

[In]

int(((A + B*x^2)*(e*x)^(3/2))/(a + b*x^2)^(1/2),x)

[Out]

int(((A + B*x^2)*(e*x)^(3/2))/(a + b*x^2)^(1/2), x)